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2,3-Wittig rearrangement of allyl ethers is widely used
in organic synthesis.! Numerous studies have focused on
their stereochemistry,*=2 but there are few methods for
generating an a-allyloxy anion regioselectively and under
mild reaction conditions.* In this communication, we
report a novel 2,3-Wittig rearrangement involving regi-
oselective metalation at carbon a to the ethereal oxygen
via 1,5-hydrogen atom transfer® by the reaction of y-ha-
loallyl ethers with Sml, in benzene—HMPA.%7

Treatment of benzyl y-iodomethallyl ether 1a with 2.5
equiv of Sml; in benzene containing 10% HMPA under
nitrogen atmosphere at room temperature for 10 min
gave homoallyl alcohol 2 in 81% yield (Table 1, run 1,
conditions A).®8 The reaction also proceeded with the
corresponding bromide, but a higher temperature (condi-
tions C) or a longer reaction time (conditions D) was
required (runs 3, 4). Both (E)- and (Z)-vinyl halides were
found to be effective for the reaction.

Intramolecular 1,5-hydrogen atom transfer plays an
important part in this reaction.® As outlined in Scheme
1, a single electron transfer from Sml, to vinyl halides
15 generates reactive vinyl radicals 16, which abstract
a hydrogen at the o'-carbon to the etheral oxygen via a
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six-membered transition state to give a-allyloxy carbon
radicals 17 followed by reduction with Sml, to give the
corresponding carbanions 18.1%11 2 3-Sigmatropic rear-
rangement of the anions gives homoallyl alcohols 19.
Lower yields of the product are obtained in THF (runs
2, 5), which has a-hydrogen-donating ability, than in
benzene, and this can be attributed to the competition
between intermolecular hydrogen abstraction and in-
tramolecular 1,5-hydrogen atom transfer. The hydrogen
undergoing 1,5-shift should be observed at the C-2
position of the product in the proposed mechanism.
Thus, we carried out the reaction by using 1b which was
99% deuterium-labeled at the benzylic methylene as
illustrated in eq 1. The 'H NMR spectrum of the product
indicated that one of the two deuteriums was present at
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C-2, and the other at C-1 (both 98% D).1213 On the other
hand, both deuteriums were found to remain at the
benzylic position (99% D) in the alkene 1c with none at
the terminal vinylic position.*

When unsymmetrical diallyl ethers are used as a
starting compound for base-induced Wittig rearrange-
ments, control over the regioselectivity of carbanion
formation (o vs o) becomes important. Nakai and his
co-workers have established that the regioselectivity of
deprotonation by n-butyllithium depends on the differ-
ence in the total number of a- and/or y-substituents,
which exclusively depress lithiation on the allylic moiety,
between the two allylic moieties.!* These results indicate
the difficulty of realizing the formation of one regioiso-
meric carbanion, independent of the substituents, leading
to the desired product with exclusion of the other via
base-deprotonation. However, these limitations can be
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Table 1. Sml>-Mediated 2,3-Rearrangement of y-Halogenoallylic Ethers

Run y-Halogenoallylic Ether (E:2 Product Conditions®  Yield (%)°  Yield (%) of
alkene (X = H)
i X 1a: X =1 (46 : 54) H A 81 e 12
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2 Determined by NMR and/or GC. ® A: Room temperature, 10 min in benzene—HMPA (9 : 1); B: Room temperature, 10 min in THF-HMPA (9 : 1); C:
Reflux, 30 min in benzene-HMPA (9 : 1); D: Room temperature, 5 h in benzene-HMPA (9 : 1); E: Reflux, 30 min in THF-HMPA (9 : 1). ¢ Isolated yield. d

Determined by GC. © Not determined.

overcome by Sml,-mediated metalation as demonstrated
by runs 7—12 in Table 1. Since 1,5-hydrogen atom trans-
fers are favored over 1,3-shifts,’>16 the anion can be gen-
erated regioselectively on an allyl group rather than on
the y-haloallyl group. The formation of 6 from 5 with Sm-
I, indicates selective metalation on the allylic moiety pos-
sessing an unfavorable y-substituent. The regiochemis-
try of carbanion formation of diallyl ethers (7, 9, 11), of
which both allylic moieties have neither a- nor y-sub-
stituents, can be controlled completely. Itis noteworthy
that regioisomeric products 10 and 12 could be obtained
regiospecifically from 9 and 11, respectively. Metalation
of alkyl allyl ether 13 takes place preferentially on the
alkyl group having lower acidic a-protons leading to the
formation of 14.

We observed the reactions of benzyl crotyl ether
derivatives 20 with defined stereochemistries. Interest-
ingly, the same distribution of the products 21 from
either of the geometrical isomers was observed (eq 2).'7
Unfortunately, the selectivity was low in this case (vide

Me | 2.5 Sml, | QH | OH
\(/OvPh 1, 10 min ‘\‘/\Ph + k('\Ph
Me Me ()
20 Yield (%) threo-21 : erythro-21
100% Z 56 39 : 61
94% E 55 39:61

infra), but this result is very important from mechanistic
viewpoint. Because of the low inversion barrier of vinyl
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5424.
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Chem. Commun. 1988, 81—82. (c) Curran, D. P.; Kim, D.; Liu, H. T.;
Shen, W. J. Am. Chem. Soc. 1988, 110, 5900—5902.

(17) In the case of (E)- or (Z)-3-iodocrotyl 2-butynyl ether, the threo-
selectivity was improved to 84:16, 90:10, respectively .

radicals,'® rapid isomerization between (E)-16 and (2)-
16 would occur, and the correlation between the geometry
at 15 and 16 would be lost. The 1,5-hydrogen atom trans-
fer is possible only for isomer (E)-16, whose half-occupied
orbital can be directed to a hydrogen undergoing transfer,
and, therefore, this step is responsible for the geometry
of alkene 18. Thus, the stereochemistry of 19 is not deter-
mined by the geometry of the starting vinyl halides. It
has been shown that the Z-form of benzyl crotyl ether
exhibits a high erythro selectivity whereas E-form shows
a low and sometime the opposite sense of diastereose-
lectivity in base-deprotonation.232 Thus, the above re-
sult is compatible with E-geometry of 18 undergoing
rearrangement and, therefore, also supports the reaction
mechanism.

The present Sml,-induced Wittig rearrangement pro-
ceeds in a regioselective manner under nonbasic condi-
tions. This is the first example, to our knowledge, of a
successful attempt to achieve the regioselective metala-
tion of unsymmetrical diallyl ethers. In addition, the reac-
tion can be effected at room temperature, and the starting
y-halovinyl ethers are more stable and accessible!® than
are silyl- or stannylmethyl allyl ethers used for the Still—
Wittig rearrangement.*2%20 Further detailed studies of
the stereochemistry of the rearrangement and extension
to more complex compounds are under investigation.

Supporting Information Available: Experimental pro-
cedures and spectral data for selected compounds (9 pages).
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