SmI₂-Induced 2,3-Wittig Rearrangement: **Regioselective Generation of α-Allyloxy Carbanions via 1,5-Hydrogen Transfer of** Vinyl Radicals

Munetaka Kunishima,*,† Kazuhito Hioki,† Kazuhiro Kono,[†] Akira Kato,[‡] and Shohei Tani^{*,†}

Faculty of Pharmaceutical Sciences, Kobe Ğakuin University, Nishi-ku, Kobe 651-21, Japan, and Niigata College of Pharmacy, Kamishin'ei-cho, Niigata 950-21, Japan

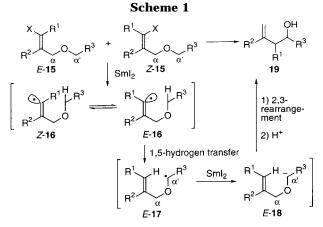
Received August 1, 1997

2.3-Wittig rearrangement of allyl ethers is widely used in organic synthesis. ¹ Numerous studies have focused on their stereochemistry, $^{1-3}$ but there are few methods for generating an α -allyloxy anion regioselectively and under mild reaction conditions.⁴ In this communication, we report a novel 2,3-Wittig rearrangement involving regioselective metalation at carbon α to the ethereal oxygen *via* 1,5-hydrogen atom transfer⁵ by the reaction of γ -haloallyl ethers with SmI₂ in benzene-HMPA.^{6,7}

Treatment of benzyl γ -iodomethallyl ether **1a** with 2.5 equiv of SmI₂ in benzene containing 10% HMPA under nitrogen atmosphere at room temperature for 10 min gave homoallyl alcohol 2 in 81% yield (Table 1, run 1, conditions A).8 The reaction also proceeded with the corresponding bromide, but a higher temperature (conditions C) or a longer reaction time (conditions D) was required (runs 3, 4). Both (*E*)- and (*Z*)-vinyl halides were found to be effective for the reaction.

Intramolecular 1,5-hydrogen atom transfer plays an important part in this reaction.9 As outlined in Scheme 1, a single electron transfer from SmI₂ to vinyl halides 15 generates reactive vinyl radicals 16, which abstract a hydrogen at the α' -carbon to the etheral oxygen via a

49, 1842–1843. (c) Goeppel, D.; Münster, I.; Brückner, R. Tetrahedron **1994**, *50*, 3687-3708.


(4) (a) Still, W. C.; Mitra, A. J. Am. Chem. Soc. 1978, 100, 1927–1928.
(b) Broka, C. A.; Shen, T. J. Am. Chem. Soc. 1989, 111, 2981–2984.
(c) Mulzer, J.; List, B. Tetrahedron Lett. 1996, 37, 2403–2404.

(5) We found that α -halovinyl radicals arising from 3-alkoxy-1,1dihalo-1-alkenes with SmI2 underwent 1,5-hydrogen atom transfer to give a-alkoxy radicals in competition with SET from SmI2 to the vinyl radicals leading to the generation of alkylidenecarbenes, see: Kun-ishima, M.; Hioki, K.; Kato, A.; Tani, S. *Tetrahedron Lett.* **1994**, *35*, 7253-7254.

(6) (a) Kunishima, M.; Hioki, K.; Ohara, T.; Tani, S. J. Chem. Soc., Chem. Commun. 1992, 219-220. (b) Kunishima, M.; Hioki, K.; Kono, K.; Sakuma, T.; Tani, S. Chem. Pharm. Bull. 1994, 42, 2190-2192.

(7) For recent reviews on SmI2, see: (a) Molander, G. A. Org. React. 1994, 46, 211-367. (b) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96, 307-338.

793-794. (b) Capella, L.; Montevecchi, P. C.; Navacchia, M. L. J. Org. Chem. 1995. 60. 7424-7432.

six-membered transition state to give α -allyloxy carbon radicals 17 followed by reduction with SmI₂ to give the corresponding carbanions 18.^{10,11} 2,3-Sigmatropic rearrangement of the anions gives homoallyl alcohols 19. Lower yields of the product are obtained in THF (runs 2, 5), which has α -hydrogen-donating ability, than in benzene, and this can be attributed to the competition between intermolecular hydrogen abstraction and intramolecular 1,5-hydrogen atom transfer. The hydrogen undergoing 1,5-shift should be observed at the C-2 position of the product in the proposed mechanism. Thus, we carried out the reaction by using 1b which was 99% deuterium-labeled at the benzylic methylene as illustrated in eq 1. The ¹H NMR spectrum of the product indicated that one of the two deuteriums was present at

$$Me \xrightarrow{Ph} (1) = \frac{2.5 \text{ Sml}_2}{D D} + \frac{2.5 \text{ Sml}_2}{THF-HMPA} = Me \xrightarrow{2} (1) + Me$$

C-2, and the other at C-1 (both 98% D).^{12,13} On the other hand, both deuteriums were found to remain at the benzylic position (99% D) in the alkene 1c with none at the terminal vinylic position.¹³

When unsymmetrical diallyl ethers are used as a starting compound for base-induced Wittig rearrangements, control over the regioselectivity of carbanion formation (α vs α') becomes important. Nakai and his co-workers have established that the regioselectivity of deprotonation by *n*-butyllithium depends on the difference in the total number of α - and/or γ -substituents, which exclusively depress lithiation on the allylic moiety, between the two allylic moieties.¹⁴ These results indicate the difficulty of realizing the formation of one regioisomeric carbanion, independent of the substituents, leading to the desired product with exclusion of the other via base-deprotonation. However, these limitations can be

[†] Kobe Gakuin University.

[‡] Niigata College of Pharmacy.

⁽¹⁾ For reviews on 2,3-Wittig rearrangement, see: (a) Nakai, T.; Mikami, K. *Chem. Rev.* **1986**, *86*, 885–902. (b) Marshall, J. A. *Comprehensive Organic Synthesis*; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 3, pp 975–1014. (c) Nakai, T.; Mikami, K. *Org. React.* **1994**, 46. 105-210.

⁽²⁾ For recent reports, see: (a) Konno, T.; Umetani, H.; Kitazume, T. J. Org. Chem. **1997**, *119*, 137–150. (b) Nakai, T.; Tomooka, K. Pure Appl. Chem. 1997, 69, 595–600. (c) Kress, M. H.; Yang, C.; Yasuda, N.; Grabowski, E. Tetrahedron Lett 1997, 38, 2633–2636.
 (3) (a) Mikami, K.; Kimura, Y.; Kishi, N.; Nakai, T. J. Org. Chem. 1983, 48, 279–281. (b) Tsai, D. J.; Midland, M. M. J. Org. Chem. 1984, 100 (2010) (2010

⁽⁸⁾ Representative procedure for the reaction is as follows. 1a (44.4 mg, 0.154 mmol) in benzene (1.5 mL) was added to a solution of SmI2 (2.76 mL of 0.140 mol/L, 0.385 mmol) in benzene-HMPA under nitrogen at rt. After 10 min, the mixture was quenched with K₂CO₃ solution and extracted with ether. The crude product was purified by TLC (hex-ane:AcOEt = 8:2) to give 20.2 mg of 3-methyl-1-phenyl-3-buten-1-ol (**2**, 81%) and the hydrodeiodinated allyl ether (**1c**: X = H, 2.9 mg, 12%). (9) (a) Murakami, M.; Hayashi, M.; Ito, Y. J. Org. Chem. **1992**, 57,

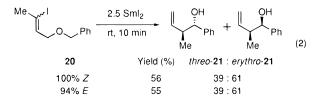
⁽¹⁰⁾ In order to prove the formation of an α -allyloxy carbanion, the reaction of 1a with SmI₂ was performed in the presence of D_2O in THF-HMPA. The formation of 2 was completely depressed, and 1aand 1c were obtained in 53% and 25% yield, respectively. Incorporation of deuterium into the benzylic position of 1c (56% D) was observed. No tetrahydrofuran derivative, which could be formed by radical cyclization of an α -allyloxy carbon radical, was observed.^{9b}

⁽¹¹⁾ Organosamariums have been shown to be involved in SmI₂induced reactions, see: (a) Molander, G. A.; Kenny, C. J. Am. Chem. Soc. 1989, 111, 8236–8246. (b) Curran, D. P.; Fevig, T. L.; Totleben, M. J. Synlett 1990, 773–774.

⁽¹²⁾ This result indicates that the reaction proceeds by 2,3-rearrangement, not by 1,2-rearrangement.

⁽¹³⁾ A similar result was obtained for the reaction under conditions C.

⁽¹⁴⁾ Nakai, T.; Mikami, K.; Taya, S.; Fujita, Y. J. Am. Chem. Soc. 1981 103 6492-6494


Table 1. SmI ₂ -Mediated 2,3-Rearrangement of γ-Halog
--

Run	γ-Halogenoallylic Ether		$(E:Z)^a$	Product	Conditions ^b	Yield (%) ^c	Yield (%) ^c of alkene (X = H)
1 2 3	N O Ph	1a: X = I 1a 1b: X = Br	(46 : 54) (46 : 54) (70 : 30)	Me OH Ph 2	A B C	81 60 68 d	1c 12 18 15
3 4 5	$Me^{\lambda} \alpha \alpha'$	10. X = B1 1b 1b	(70 : 30) (55 : 45) (70 : 30)	Me ² Ph ²	D E	78 ^d 59 ^d	$\frac{13}{21} \frac{d}{d}$
6	$\int_{\alpha}^{\alpha} O_{\alpha'} Ph$	3b : X = Br	(45 : 55)	OH 4	С	62	e
7 8	$Me \underbrace{\int_{\alpha}^{rX} O_{\alpha'}}_{\alpha'} n \cdot C_7 H_{15}$	5a: X = I 5b: X = Br	(68 : 32) (53 : 47)	Me OH n-C ₇ H	6 А Н ₁₅ С	64 51	e
9		7b: X = Br	(63 : 37)	Me OH 8	С	55 ^d	e
10 11	$Me \overbrace{\alpha}^{r X} O \overbrace{\alpha'}^{r \cdot C_6 H_{13}}$	9a: X = I 9b: X = Br	(64 : 36) (69 : 31)	Me n-C ₆ H ₁₃	³ 10 A C	81 52	9c trace
12		11b X = Br	(0:100)	Me OH n-C ₆ H ₁₂	³ 12 C	86	11c trace
13	$Me \underbrace{\alpha}^{r} \alpha \overset{X}{\alpha'} n C_{9}H_{19}$	13a: X = I 13b: X = Br	(62 : 38) (53 : 47)	Me OH n-C ₉ H ₁₉	14 A C	63 33	13c 31 5

^a Determined by NMR and/or GC. ^b A: Room temperature, 10 min in benzene–HMPA (9:1); B: Room temperature, 10 min in THF–HMPA (9:1); C: Reflux, 30 min in benzene–HMPA (9:1); D: Room temperature, 5 h in benzene–HMPA (9:1); E: Reflux, 30 min in THF–HMPA (9:1). ^c Isolated yield. ^d Determined by GC. ^e Not determined.

overcome by SmI₂-mediated metalation as demonstrated by runs 7–12 in Table 1. Since 1,5-hydrogen atom transfers are favored over 1,3-shifts,^{15,16} the anion can be generated regioselectively on an allyl group rather than on the γ -haloallyl group. The formation of **6** from **5** with Sm-I₂ indicates selective metalation on the allylic moiety possessing an unfavorable γ -substituent. The regiochemistry of carbanion formation of diallyl ethers (**7**, **9**, **11**), of which both allylic moieties have neither α - nor γ -substituents, can be controlled completely. It is noteworthy that regioisomeric products **10** and **12** could be obtained regiospecifically from **9** and **11**, respectively. Metalation of alkyl allyl ether **13** takes place preferentially on the alkyl group having lower acidic α -protons leading to the formation of **14**.

We observed the reactions of benzyl crotyl ether derivatives **20** with defined stereochemistries. Interestingly, the same distribution of the products **21** from either of the geometrical isomers was observed (eq 2).¹⁷ Unfortunately, the selectivity was low in this case (*vide*

infra), but this result is very important from mechanistic viewpoint. Because of the low inversion barrier of vinyl

radicals,¹⁸ rapid isomerization between (*E*)-**16** and (*Z*)-**16** would occur, and the correlation between the geometry at **15** and **16** would be lost. The 1,5-hydrogen atom transfer is possible only for isomer (*E*)-**16**, whose half-occupied orbital can be directed to a hydrogen undergoing transfer, and, therefore, this step is responsible for the geometry of alkene **18**. Thus, the stereochemistry of **19** is not determined by the geometry of the starting vinyl halides. It has been shown that the *Z*-form of benzyl crotyl ether exhibits a high *erythro* selectivity whereas *E*-form shows a low and sometime the opposite sense of diastereose-lectivity in base-deprotonation.^{1a,3a} Thus, the above result is compatible with *E*-geometry of **18** undergoing rearrangement and, therefore, also supports the reaction mechanism.

The present SmI₂-induced Wittig rearrangement proceeds in a regioselective manner under nonbasic conditions. This is the first example, to our knowledge, of a successful attempt to achieve the regioselective metalation of unsymmetrical diallyl ethers. In addition, the reaction can be effected at room temperature, and the starting γ -halovinyl ethers are more stable and accessible¹⁹ than are silyl- or stannylmethyl allyl ethers used for the Still– Wittig rearrangement.^{4a,c,20} Further detailed studies of the stereochemistry of the rearrangement and extension to more complex compounds are under investigation.

Supporting Information Available: Experimental procedures and spectral data for selected compounds (9 pages).

JO9714223

⁽¹⁵⁾ Huang, X. L.; Dannenberg, J. J. J. Org. Chem. 1991, 56, 5421–5424.

^{(16) (}a) Heiba, E. I.; Dessau, R. M. J. Am. Chem. Soc. **1967**, 89, 3772–3777. (b) Lathbury, D. C., Parsons, P. J., Pinto, I. J. Chem. Soc., Chem. Commun. **1988**, 81–82. (c) Curran, D. P.; Kim, D.; Liu, H. T.; Shen, W. J. Am. Chem. Soc. **1988**, 110, 5900–5902.

⁽¹⁷⁾ In the case of (*E*)- or (*Z*)-3-iodocrotyl 2-butynyl ether, the *threo*-selectivity was improved to 84:16, 90:10, respectively.

^{(18) (}a) Galli, C.; Guarnieri, A.; Koch, H.; Mencarelli, P.; Rappoport, Z. *J. Org. Chem.* **1997**, *62*, 4072–4077. (b) Fessenden, R. W.; Schuler,

R. H. J. Chem. Phys. 1963, 39, 2147-2195.

⁽¹⁹⁾ There are so many methods available for the synthesis of alkenyl halides, see: Larock, R. C. *Comprehensive Organic Transformations: A Guide to Functional Group Preparations*, VCH: New York, 1989.

⁽²⁰⁾ Although Still-type protocols are known to exhibit a high regioselectivity, substrates utilized for reported reactions are virtually restricted to a stannylated methyl ether of allyl alcohols.¹